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In this paper two different estimation procedures, Maximum Likelihood (MLE) and Bayes
Modal Estimation (Maximum a posteriori; MAP), are considered. Both methods are well-
known and widely used. The aim of this paper is to show how the estimation equations can be
derived from the basic model equation of Birnbaum’s two-parametric model. We demonstrate
the implementation of the derived estimators in the software R using the Newton-Raphson
Algorithm.

Introduction
Especially in the field of educational testing, models of

Item Response Theory (IRT) have become very popular. The
advantage of tests based on IRT is their potential use in com-
puterized adaptive testing (Wainer et al., 2000; van der Lin-
den & Glas, 2000). The focus of this paper is to demonstrate
how the person parameter in IRT models can be estimated us-
ing maximum likelihood (ML; Enders, 2005; Eliason, 1993;
Held, 2008) and Bayesian estimation theory (Gelman, Car-
lin, Stern, & Rubin, 2003; Held, 2008). There is a consid-
erable body of literature dealing with parameter estimation
techniques in IRT (e. g. Baker & Kim, 2004; Embretson
& Reise, 2000; de Ayala, 2009; Bock & Aitkin, 1981). Un-
fortunately, most of the literature provides the final formu-
las without explicating the associated derivations including
the underlying rationale. Only a few papers explain how
to implement estimation routines in programming language
(Partchev, 2008). In this paper, the ML estimator and the
Bayes modal estimator will be derived step by step using
Birnbaum’s two-parametric logistic model. For didactic rea-
sons the applied mathematics are explained in detail. Subse-
quently, the estimation equations will be implemented in the
software R (R Development Core Team, 2010) applying the
Newton-Raphson algorithm.

In IRT models two sets of parameters can be distin-
guished: (a) item parameters that characterize the items of
a test and (b) the person parameter ξ, which can be a latent
ability in achievement tests or other personal characteristics.
In the present paper the considerations will be confined to
the estimation of ξ. This means that the item parameters are
assumed to be known. This is not unrealistic as in many com-
puter based test applications the estimation of the latent vari-
able ξ is based on a calibrated set of items. Hence, the item
parameters have been estimated in advance based on a sam-
ple. Applying CAT, an item bank with a sufficient number of
calibrated items, is essential. The previously estimated item
parameters are used in the estimation of ξ. Adaptive testing
differs from non-adaptive approaches by the administration
of items. In a non-adaptive test setting, the number of items

is fixed and usually the same for all test takers. Once the
test taker has completed the entire test the person parameter
is estimated. In contrast, in adaptive testing, after initial re-
sponses to starting items, the choice of the subsequent items
rests upon tentative estimates ξ̂ based on the previous item
responses of the examinee. Such items are chosen that are
expected to contribute the most information on the person
parameter. The concept of information is essential not only
in adaptive testing and will be introduced more formally be-
low. The estimators provided in this paper can be used in
adaptive and non-adaptive testing settings in order to obtain
provisional and final estimates of ξ.

Maximum Likelihood Estimation
of a Person’s Ability

The maximum likelihood estimation can be used to esti-
mate unknown parameters based on sample data. Let Y =
Y1, . . . ,Yk be a 1 × k dimensional random variable with the
single items Yi. It is important to distinguish between Y and
its realization u = u1, . . . , uk that represents the data. The
MLE rests upon the likelihood function L(Y = u; θ). For
brevity, we simply write L(u; θ) in the remainder. θ is the
vector of unknown parameters we aim to estimate. If a ran-
dom sample of N test takers is drawn and the set of k items
is presented, the ML function can be defined as

L(u; θ) = P(Y1 = u1, . . . ,YN = uN ; θ) (1)

For N > 1, u is a N × k data matrix. Each row represents the
realized response vector of an examinee. The right hand side
of Equation 1 is also called the joint distribution function (e.
g. Eliason, 1993). The ML function as defined here is a prob-
ability function describing the probability of the occurrence
of the data as a function of the unknown parameters1. The

1 The likelihood function does not necessarily need to be equal to
the probability function. It is sufficient that L(u; θ) is proportional
to the probability function.
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ML estimator θ̂ is defined as

θ̂ = arg max
θ∈Ωθ

L(u; θ). (2)

Hence, the underlying principle of the ML estimation is to
find the value of θ defined in the parameter space Ωθ that
maximizes the probability of the occurrence of the data. Note
that the data are regarded as events that occur with a particu-
lar typically unknown probability.

In the commonly used IRT models it is assumed that the
probability to solve a particular item i is conditionally inde-
pendent from the responses to other items l , i given the
latent variable ξ. Hence, given person’s ability the proba-
bility to solve one item does not depend on the performance
on other items. Under this so-called local stochastic inde-
pendence (e. g. Embretson & Reise, 2000) we can write
Equation 1 as

L(u; θ) = P(Y11 = u11, . . . ,YNk = uNk; θ) (3)

=

N∏
n=1

k∏
i=1

P(Yni = uni; θ).

Yni refers to the i-th item and the n-th randomly sampled test
taker. uni is a realization of Yni. In the most general form, the
parameter vector θ contains all the item and person param-
eters2. The number of item parameters in θ depends on the
specific IRT model chosen to fit the data.

In this paper we confine the estimation problem to esti-
mating ξ of a single randomly drawn person based on the re-
sponse vector u. Additionally, we know the item parameters.
This situation is not unrealistic but typical in computerized
testings based on calibrated item pools. The parameter vec-
tor reduces to a scalar ξ estimated by ξ̂. Therefore, Equation
3 reduces to

L(u; ξ) = P(Y1 = u1, . . . ,Yk = uk; ξ) (4)

=

k∏
i=1

P(Yi = ui; ξ),

given that local stochastic independence holds. The items
Yi are dichotomous with the values Yi = 0 for answered in-
correctly and Yi = 1 when the item i is solved.3 Using the
2PL-model (Birnbaum, 1968) the probability to solve item Yi
is

P(Yi = 1 | ξ) =
exp[αi(ξ − βi)]

1 + exp[αi(ξ − βi)]
. (5)

The terms P(Yi = ui; ξ) in Equation 4 will be replaced by
the righthand side of the 2PL-Model equation. In order to
estimate the ability ξ given a realized response pattern u, a
general likelihood function can be written as

L(u; ξ) =
∏

i

P(Yi = ui; ξ) (6)

=
∏

i

P(Yi = 1 | ξ)ui · P(Yi = 0 | ξ)1−ui .

In real applications this ensures that the likelihood of the ac-
tual realized response vector is calculated. As the number
of administered items increases the value of the likelihood
L(u; ξ) quickly becomes tiny. To avoid numerical compli-
cations because of the small numbers, the natural logarithm
ln[L(u; ξ)], denoted as l(u; ξ), is commonly used (see Equa-
tion 7). Furthermore, the log-transformation of the likelihood
converts a product into a sum which simplifies the subse-
quent derivations substantially.

l(u; ξ) =
∑

i

ln
[
P(Yi | ξ)

]
(7)

=
∑

i

ln
[
P(Yi = 1 | ξ)ui · P(Yi = 0 | ξ)1−ui

]
=

∑
i

{
ui · ln

[
P(Yi = 1 | ξ)

]
+(1 − ui) · ln

[
P(Yi = 0 | ξ)

]}
Recall that the ML estimate is that value of the parameter
space which maximizes the likelihood or the log-likelihood
function. The maximum of any function f (X) of a real-
valued variable X can be found by setting the first derivative
of this function equal to zero. The first derivative f ′(x) of
any continuous and differentiable function f (x) is the slope
of f (X) at point X = x. At any maximum or minimum of
f (X) the slope of the function is f ′(X) = 0. Consequently, a
maximum can be found by setting f ′(X) = 0, and solving for
X. So as to estimate ξ the first derivative l′(u; ξ) of the log-
likelihood is needed and a root-finding algorithm needs to be
employed.4 The first derivative l′(u; ξ) of the log-likelihood
(see Equation 7) can be written as

d
dξ

l(u; ξ) =
d
dξ

∑
i

ui · ln
[
P(Yi = 1 | ξ)

]
(8)

+ (1 − ui) · ln
[
P(Yi = 0 | ξ)

]
=

∑
i

{ d
dξ

ui · ln
[
P(Yi = 1 | ξ)

]
+

d
dξ

(1 − ui) · ln
[
P(Yi = 0 | ξ)

]}
.

2 The number of elements of θ depends on the parametric model
and the particular MLE method. Using the Joint Maximum Like-
lihood (JML) method each person parameter is enclosed. Using
Marginal Maximum Likelihood (MML), θ reduces to the item pa-
rameters and the quantities describing the distribution of ξ as the
variance and the expected value. For a comparison of different MLE
methods see e. g. Baker & Kim (2004) and Embretson & Reise
(2000).

3 The terminology used here is associated with achievement tests
in order to keep the language simple. But note, that for items that
aim to indicate person characteristics such as neuroticism or open-
ness, it is not appropriate to use terms like correct or incorrect.

4 Note that further MLE algorithms exist that avoid the use of
the derivative of the likelihood, for instance direct maximization
methods (Turner, 2008).
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The derivative of a sum of two functions equals the sum of
the derivatives of these functions. Therefore, we have to find
the first derivatives of two logarithmic functions with respect
to each item Yi. The terms ui and 1−ui are constants and can
be placed in front of the respective first derivatives. Note that
the functions ln[P(Yi = y | ξ)] are chained. The natural loga-
rithm ln() is the outer function and P(Yi = y | ξ) is the inner
function given by the model equation (Equation 5). Hence
the chain rule needs to be applied, which states that the first
derivative of a chained function is the product of the first
derivative of the outer function and the first derivative of the
inner function. For any function f (X) the natural logarithm
is ln[ f (X)] = 1/ f (X) · f ′(X). Applied to Equation 8 this leads
to

d
dξ

l(u; ξ) =
∑

i

{
ui ·

1
P(Yi = 1 | ξ)

·
d
dξ

P(Yi = 1 | ξ) (9)

+ (1 − ui) ·
1

1 − P(Yi = 1 | ξ)

·
d
dξ

[
1 − P(Yi = 1 | ξ,αi, βi)

]}
.

In this form also the estimation equation contains two deriva-
tives that have to be computed. Both involve the model equa-
tion of the respective IRT model, here the 2PL-model given
by Equation 5. The model equation is a chained function
of the person variable ξ. Hence, the chain rule is required
multiple times. Decomposing the model equation gives two
functions: (a) the inner function k(ξ) = 1 + exp[−αi(ξ − βi)]
and (b) g(ξ) = 1/k(ξ) the outer function. Applying the chain
rule the first derivative of the model equation is given by:

d
dξ

P (Yi = 1 | ξ) = g′
[
k (ξ)

]
k′ (ξ) (10)

Therefore the inner and the outer function have to be derived
separately. Using the respective calculus for e-function gives

k′ (ξ) =
d
dξ

(
1 + exp

[
−αi

(
ξ − βi

)])
(11)

=
d
dξ

(
1 + exp

[
−αiξ + αiβi

])
= −αi · exp

[
−αi

(
ξ − βi

)]
.

The first derivative of the outer function is

g′
[
k (ξ)

]
=

d
dξ

1
k (ξ)

(12)

=
d
dξ

k(ξ)−1

= −k(ξ)−2.

Combining Equations 11 and 12 yields

d
dξ

P (Yi = 1 | ξ) = g′
[
k (ξ)

]
k′ (ξ) (13)

= −k(ξ)−2 · k′ (ξ)

= −
(
1 + exp

[
−αi

(
ξ − βi

)])−2

· (−αi) · exp
[
−αi

(
ξ − βi

)]
=
αi · exp

[
−αi

(
ξ − βi

)](
1 + exp

[
−αi

(
ξ − βi

)])2 .

Rearranged, the terms reveal the meaning of the first deriva-
tive of the model function. It simply is the weighted product
of the two conditional category probabilities given the model
parameters and the latent variable ξ.

d
dξ

P (Yi = 1 | ξ) = αi ·
1

1 + exp
[
−αi

(
ξ − βi

)]
·

exp
[
−αi

(
ξ − βi

)]
1 + exp

[
−αi

(
ξ − βi

)] (14)

= αi ·
1

1 + exp
[
−αi

(
ξ − βi

)]
·

1
1 + exp

[
αi

(
ξ − βi

)]
= αi · P (Yi = 1|ξ) · P (Yi = 0 | ξ)

The product P (Yi = 1|ξ) ·P (Yi = 0 | ξ) of the two conditional
probabilities gives the variance of Yi given ξ. This is the so-
called conditional variance function Var(Yi | ξ). Thus, in the
case of binary manifest variables the first derivative of the
2PLM is the conditional variance function weighted by the
item discrimination αi. In order to obtain all the building
blocks of Equation 9, the first derivative of the conditional
probability to fail item Yi is needed. The computational steps
are basically the same as for the derivation of P (Yi = 1 | ξ).
Attention has to be paid to the fact that the inner function
k(ξ) differs between the two equations of P (Yi = 1 | ξ) and
P (Yi = 0 | ξ). In order to avoid confusion, let’s denote the in-
ner function of P (Yi = 0 | ξ) by k0(ξ) = 1 + exp

[
αi

(
ξ − βi

)]
.

The outer function g(ξ) remains the same. Thus, the deriva-
tions we did previously are sufficient (see Equation 12). The
first derivative of the inner function k0(ξ) can be obtained
utilizing the same mathematical operations as demonstrated
in Equation 11. This leads to

k′0 (ξ) = αi · exp
[
αi

(
ξ − βi

)]
. (15)

Combined with the first derivative of the outer function we
obtain for the first derivative of P (Yi = 0 | ξ)

d
dξ

P (Yi = 0 | ξ) = g′
[
k0 (ξ)

]
k′0 (ξ) (16)

= −αi · P (Yi = 1 | ξ) · P (Yi = 0 | ξ) .

It can be seen that the first derivative of P (Yi = 0 | ξ) is the
negative first derivation of P (Yi = 1 | ξ). Thus again it is the
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conditional variance function Var(Yi | ξ) weighted with the
negative item discrimination parameter. Now, we can insert
Equations 14 and 16 into Equation 9.

d
dξ

l(u; ξ) =
∑

i

{
ui ·
αi · P(Yi = 1 | ξ) · P(Yi = 0 | ξ)

P(Yi = 1 | ξ)
(17)

+ (1 − ui) ·
−αi · P(Yi = 1 | ξ) · P(Yi = 0 | ξ)

P(Yi = 0 | ξ)

}
=

∑
i

{
ui · αi · P(Yi = 0 | ξ)

+ (1 − ui) · (−αi) · P(Yi = 1 | ξ)
}

=
∑

i
αi

[
ui − P(Yi = 1 | ξ)

]
Its important to note the difference ui − P(Yi = 1 | ξ) is noth-
ing else but the residual of the regression E(Yi | ξ). Hence, the
person parameter estimate of ξ is that value that minimizes
the sum of the weighted residuals over the I items. Here it
can directly be seen that the contribution of an item Yi in-
creases with the item discrimination αi. In the next section
the estimation function for the Bayesian maximum a posteri-
ori (MAP) estimator will be derived and compared to the ML
estimator.

Bayes Modal Estimation

As the name implies, the Bayes Modal Estimation (BME)
has been developed within the Bayesian statistical frame-
work which faces the frequentist approach. Both of these
frameworks have seemed to be incompatible for 250 years.
The so-called Bayesian-Frequentist debate (Efron, 2005)
will not be continued here. It should only be noted that the
MLE method as outlined previously refers to the frequen-
tist approach, whereas BME considered in this section be-
longs to the Bayesian methods. It is important to note, that
both estimation procedures are not compatible. Furthermore,
the decision for one of these estimators might be associ-
ated with tremendous theoretical and practical consequences.
Bayesian point and interval estimators can vary reasonably
compared to common ML estimators. Whereas the param-
eter θ aimed to be estimated is unknown but considered to
be fixed in the frequentist’s perspective, it is considered to
be a random variable in the Bayesian framework. As a con-
sequence, confidence intervals5 and p-values have different
meanings. A detailed discussion of all these differences is
far beyond the scope of this paper. The interested reader
is referred to Gelman et al. (2003). Here, we confine the
considerations to the mathematical and technical aspects of
MLE and BME. The mathematical relations between ML and
Bayesian estimators allows us to use several derivations of
the previous section. Let us start with the theorem which
has given the Bayesian statistics its name: The Bayes’ rule,
named after the statistician Thomas Bayes (e. g. Everitt,
2005).

All Bayesian statistical methodology is based on the
Bayes’ rule, which relates conditional probabilities of two

events, A and B, defined in the same probability space. Thus,
A and B have a joint distribution, so that two conditional
probabilities P(A | B) and P(B | A) can be considered. The
Bayes’ rule describes how these two probabilities are linked
mathematically (e. g. Steyer, 2002). Transferred to the
context of parameter estimation within the IRT framework,
the equivalents for A and B are the response vector Y and
the parameter vector θ, which represent all the parameters
aimed to be estimated. In the Bayesian framework they are
both viewed as random variables with a joint distribution.
As shown previously, MLE rests upon maximizing the con-
ditional probability P(Y | θ), which is equivalent to the right-
hand side of Equation 1. However, the Bayesian inference is
based on the so-called posterior distribution P(θ |Y = u)6. If
θ is real-valued, the posterior probability function is a density
function denoted as f (θ |Y = u). Due to the Bayes’ rule we
can write the posterior distribution as

f (θ |Y = u) =
P(Y = u | θ) · f (θ)∫
P(Y = u | θ) · f (θ)dθ

. (18)

All Bayesian statistical inference rest upon the posterior dis-
tribution. Different statistics that serve as point estimators
can be derived from the posterior distribution. The expected
a posteriori (EAP) estimator is defined as the expected value
of the posterior distribution. An alternative is the Bayes
modal estimator, also known as the maximum a posteriori
(MAP) estimator, defined as the mode Mod(θ |Y) of the pos-
terior distribution.

Mod(θ |Y = u) = arg max
θ∈Ωθ

f (θ |Y = u) (19)

The denominator of Equation 18 refers to the law of total
probability with P(Y = u) =

∫
P(Y = u | θ) · f (θ)dθ. The de-

nominator of the posterior distribution is simply the uncon-
ditional probability of the response vector. Given any pos-
sible response pattern Y, this is a constant ensuring that the
integral of the posterior distribution is one. In mathematical
terms it serves as a normalizing constant. Therefore, the pos-
terior distribution is proportional to the nominator of Equa-
tion 18. Consequently, the MAP estimator can equivalently
be defined as

Mod(θ |Y = u) = arg max
θ∈Ωθ

P(Y = u | θ) · f (θ). (20)

For that reason, the denominator of Equation 18 can be omit-
ted for the purpose of parameter estimation. It is sufficient to
develop an estimation equation based on P(Y = u | θ) · f (θ).
The first factor P(Y = u | θ) is the probability of occurrence
of the response vector Y = u given the unknown parameters.
This probability function is given by the ML function L(u; θ)
as defined in Equations 1, 2, and 4. The second term f (θ) is
the so-called prior distribution or simply the prior. Usually,

5 The Bayesian analogy of the confidence interval is the so-called
credibility interval.

6 The fact that the model parameters are considered as random
variables θ is highlighted by the cursive notation.
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f (θ) is not known previously to the data analysis. The spec-
ification of the prior distribution reflects the knowledge or
the belief of the researcher with respect to the parameter θ in
advance. Insofar, the choice of the prior is always somewhat
arbitrary. How to choose an appropriate prior distribution is
one of the fundamental problems of Bayesian statistics and
will not be discussed here. The interested reader is referred
to Gelman et al. (2003).

Let us go back to the estimation problem of the latent per-
son variable ξ considered here. Assume the distribution of ξ
is known to be normally distributed. In fact, this is a com-
mon choice of the prior in IRT. As for the ML estimation, let
us consider the case where the item parameter αi and βi are
known. The vector of parameters that have to be estimated
reduces to a single value of ξ. The variable Y is the response
vector obtained by applying the items Y1, . . . ,Yi, . . . ,Yk. Let
LMAP(ξ) denote the estimation equation of the MAP estima-
tor, then Equation 20 can be written as

LMAP = L(u; ξ) · f (ξ). (21)

It can be seen that the MAP estimator is defined as the com-
mon ML estimator weighted by the prior distribution. LMAP
is a function of the the latent variable ξ. Again we want to
find the values defined in the parameter space Ωξ that maxi-
mize the estimation function. If LMAP is a differentiable func-
tion with respect to ξ, we can proceed in the same way as for
MLE. The first derivative of LMAP can be set equal to zero
and the maxima can be found by a root finding algorithm.
Here as well the natural logarithm lMAP = ln(LMAP) is used
instead of LMAP because of the mathematical and numerical
benefits outlined previously. lMAP is given by

lMAP = l(u; ξ) + ln[ f (ξ)]. (22)

The first derivative of lMAP is

l′BME =
d
dξ

l(u; ξ) +
d
dξ

ln[ f (ξ)] (23)

= l′(u; ξ) +
d
dξ

ln[ f (ξ)].

Thus the first derivative of lMAP is the sum of the ML es-
timation equation l′(u; ξ) as derived in the last section and
the first derivative of the logarithm of the prior distribution.
Let us assume that ξ is known to be normally distributed with
ξ ∼ N(µξ, σξ) . The natural logarithm of the prior distribution
is given by

ln[ f (ξ)] = ln

 1
√

2πσξ
exp

−
(
ξ − µξ

)2

2σ2
ξ


 . (24)

Rearranging this equation reveals that the log-transformed
prior can be divided into two parts: a function of ξ and a

constant that is independent of ξ.

ln[ f (ξ)] = ln

 1
√

2πσξ
exp

−
(
ξ − µξ

)2

2σ2
ξ


 (25)

= ln (1) − ln
(√

2π
)

+ ln
(
σξ

)
+
−
(
ξ − µξ

)2

2σ2
ξ

(26)

= −0.9189385 + ln
(
σξ

)
−

(
ξ − µξ

)2

2σ2
ξ

(27)

The term −0.9189385 + ln(σξ) does not depend on ξ. Hence,
it can be dropped from the estimation equation. In graphical
terms, an additive constant shifts the log-likelihood function
vertically but neither changes the form of the function nor
the location of the maxima or minima. Hence, the equation
that has to be derived is further simplified. Only the first
derivation of the reduced log-prior has to be found.

d
dξ

−
(
ξ − µξ

)2

2σ2
ξ

=
d
dξ

−
(
ξ2 − 2ξµξ + µξ

2
)

2σ2
ξ

(28)

= −
d
dξ

1
2σ2

ξ

ξ +
d
dξ

µξ

σ2
ξ

ξ −
d
dξ
µ2
ξ

= −
ξ − µξ

σ2
ξ

The last line could also be written as (µξ + ξ)/σ2
ξ . Inserting

the term of Equation 28 into Equation 23 and including the
results from Equation 17 yields

l′MAP =
∑

i
αi

[
ui − P(Yi = 1 | ξ)

]
−
ξ − µξ

σ2
ξ

. (29)

Written in this way, Equation uncovers a general charac-
teristic associated with Bayesian estimation procedures. The
further more the values of ξ deviate negatively from the mean
of the prior distribution, the more positive the first derivative
of the log-prior becomes. In turn, the more ξ deviates from
the mean of the prior in the positive direction the more neg-
ative does the prior become. Hence, the Bayesian estimator
tends to pull the estimator toward the mean of the prior. In
other words, the influence of the prior increases with the ab-
solute value of the difference ξ−µξ resulting in a shrinkage of
Bayesian estimators towards the mean of the prior distribu-
tion. The extent of shrinkage depends on the variance of the
prior. The smaller the σ2

ξ is, the greater the shrinkage effect,
and the more influential the prior becomes in the estimation
stage. Recall that all inference in Bayesian statistics rests
on the posterior distribution. This poses a combination of
the previous knowledge expressed by the prior distribution
and the data given a particular model expressed by the like-
lihood. How strong the previous knowledge is weighted is
determined by the variance of the prior. The larger σ2

ξ is, the
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less influential the prior knowledge is.7
With the two derived estimation equations for MLE and
MAP the parameter ξ can be estimated for a given response
pattern Y. It is important to note that the ML estimation
method is only applicable if the sum

∑
i Yi is not zero or

equal to the number of answered items. In other words, if
all items have been answered correctly or none of the items
have been answered correctly the ML estimation will fail.
More formally, the ML estimates in these cases are in fact
−∞ and +∞. Such values are of no diagnostic value. In
contrast, even under these circumstances, the Bayesian pro-
cedures yield an estimator for ξ. Unfortunately, neither MLE
nor MAP equations can be solved analytically. This means
that the extremes of these functions need to be found by us-
ing numerical methods. A well known algorithm applicable
in these cases is the Newton-Raphson algorithm, which will
be introduced in the next section.

Newton-Raphson Algorithm
The Newton-Raphson algorithm (NRA) is a numerical

method that allows to find the roots of real-valued functions,
which must be continuous and twice differentiable. Since
the method is iterative, in a number of identical cycles, the
iterations, the true root is approximated. The application of
NRA needs an initial guess of the root to serve as a starting
value. Let ξ̂0 be denoted as the starting value. The algorithm
then finds the value ξ̂1 in the first iteration, ξ̂2 in the second
iteration and so forth. In general the estimator ξ̂ j+1 of the
j + 1th iteration is found by

ξ̂ j+1 = ξ̂ j −
l′
(
ξ̂
)

l′′
(
ξ̂
)
.

(30)

l′′(ξ̂) is the second derivative of the log-likelihood. The first
derivative is also involved, so we can use the derivations
done previously. Equation 30 implies that the difference
ξ̂ j+1 − ξ̂ j between the point estimators of two successive it-
erations is the ratio of the first and second derivative of the
log-likelihood. This difference is large if l′(ξ̂) is large. This
is the case when the log-likelihood is steep and therefore the
maximum is expected to be far away. But the distance of the
maxima does not only depend on the first derivation but also
on the curvature of a function that is expressed by the second
derivative. The higher the value of the second derivative, the
more rapidly the slope of the function changes, implying that
the maximum can be close to the provisional estimate.

The accuracy of the final estimate depends on the arbitrar-
ily chosen convergence criteria that has to be specified prior
to the analysis. If no convergence criteria is provided, the
algorithm would theoretically never stop to iterate. Different
convergence criteria are in use. A freuquently used crite-
rion is the modulus |l′(ξ̂ j) − l′(ξ̂ j)| of the difference between
the values of the first derivatives of two successive iterations.
The idea is that the allgorithm has converged when the like-
lihood ceases to change substantially. Typically a value very
close to zero is chosen (e. g. < 0.00005). Hence, the result of
NRA is an approximate value of the true root approximated

by any desired degree of accuracy determined by the conver-
gence criteria. The second derivative of the log-likelihood
l′′(u; ξ) is not only required in order to employ NRA. The
negative second derivative of l(u; ξ) is also called the ob-
served Fisher information and is beyond IRT directly related
with standard errors of ML estimates. This will be shown be-
low for the case of estimating the person parameter ξ. At first
I provide the technical details for the derivation of l′′(u; ξ).

In general, the computation of the second derivative f ′′(X)
of a function f (X) rests on the same mathematical rules
as used for the first derivative. This is because f ′′(X) =

d
dX f ′(X). So, we can use all the results achieved previously.
Let us start with

d2

dξ2 l (ξ) =
d
dξ

l′ (ξ) (31)

=
d
dξ

∑
i
αi

[
ui − P (Yi = 1 | ξ)

]
.

Solving the brackets and inserting the model equation yields

d2

dξ2 l (ξ) =
d
dξ

∑
i
αiui − αiP (Yi = 1 | ξ) (32)

=
d
dξ

∑
i
αiui −

d
dξ

∑
i
αiP (Yi = 1 | ξ)

= −
d
dξ

∑
i
αiP (Yi = 1 | ξ)

= −
∑

i

d
dξ

αi

1 + exp
[
−αi

(
ξ − βi

)] .
The third line of Equation 32 results from the fact that the
sum

∑
i αiui is not a function of ξ, so the first derivative of

this term is zero. The remaining derivative is rather sim-
ilar to the computation of the first derivative of the model
equation for the 2PLM (see Equation 14). Thus, the chain
rule needs to be applied again. The inner functions of ra-
tio in the last term of Equation 32 is equivalent to the inner
function of the model equation of the 2PLM. We can use
k′(ξ) = −αi · exp

[
−αi

(
ξ − βi

)]
from Equation 11. It remains

the computation of the first derivative g′(ξ) of the outer func-
tion that is here g′(ξ) = αi

k(ξ) .

g′
[
k (ξ)

]
=

d
dξ
αi

k (ξ)
(33)

=
d
dξ
αi · k(ξ)−1

= −αi · k(ξ)−2

7 In Bayesian literature a prior with a large variance σ2
ξ is also

called an informative prior. Whereas prior distributions with small
values of σ2

ξ are named non-informative prior, the term informative
refers to the weight of the prior knowledge.
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Due to the chain rule, we obtain for an item Yi

d
dξ

αi

1 + exp
[
−αi(ξ − βi)

] = g′
[
k (ξ)

]
k′ (ξ) (34)

= −αi · k(ξ)−2 · k′ (ξ)

= α2
i ·

exp
[
−αi

(
ξ − βi

)](
1 + exp

[
−αi

(
ξ − βi

)])2

= α2
i · P (Yi = 1 | ξ) · P (Yi = 0 | ξ) .

The second derivative is again the conditional variance func-
tion Var(Yi | ξ), weighted by the squared item discrimination
parameter. In the 2PL-model for dichotomous data this is
the item information function I(Y | ξ). The sum

∑
i I(Y | ξ) is

the test information function T (ξ). Inserting the results of
Equation 32 yields

d2

dξ2 l(u; ξ) = −
∑

i

α
2
i · P(Yi = 1 | ξ) · P(Yi = 0 | ξ) (35)

As stated previously, −l′′(u; ξ) is the observed Fisher in-
formation. Additionally, from Equation 35 follows that
−l′′(u; ξ) = T (ξ). Thus, in IRT models the test information
function is the observed Fisher information. On the basis of
T (ξ) the standard errors of ξ̂ can be computed by

S E(ξ̂) =
1√
T (ξ)

. (36)

So far, we developed the NRA for MLE. As a by-product, we
derived the standard errors from the second derivative of the
log-likelihood. Let us now consider the NRA for the MAP
estimator. Similarly to MLE, the first and second derivative
of lMAP is required. Starting with lMAP (Equation ), we need
to find

d2

dξ2 lMAP (ξ) =
d
dξ

∑
i
αi

[
ui − P (Yi = 1 | ξ)

]
−
ξ − µξ

σ2
ξ

= l′′ (ξ) −
d
dξ
ξ − µξ

σ2
ξ

. (37)

Again, we benefit from the additive composition of lMAP,
which consists of the log-likelihood and the log-transformed
prior. So we can use l′′ (ξ) from Equation 35 and only need
to find the derivative of (ξ − µξ)/σ2

ξ . Rearranging this term
reveals that it is a linear function of ξ which can easily be
derived.

d
dξ
ξ − µξ

σ2
ξ

=
d
dξ

1
σ2
ξ

· ξ −
µξ

σ2
ξ

(38)

=
1
σ2
ξ

Inserting this expression into Equation 37 finally yields

l′′BME (ξ) = −
∑

i

α
2
i · P(Yi = 1 | ξ) · P(Yi = 0 | ξ) −

1
σ2
ξ

(39)

Similarly the MLE, the standard error of the Bayes modal es-
timator rests also on the second derivative, here l′′BME , which
is given by

S EBME(ξ̂) =
1√
−l′′BME

(40)

=
1√

T (ξ) + 1
σ2
ξ

.

In Bayesian terminology −l′′BME is called the observed pos-
terior information. Comparing the standard errors of MLE
and BME reveals an additional difference that is generally
associated with Bayesian estimators. The standard errors of
Bayesian estimators are smaller compared to those of MLE.
The extend to which S EBME(ξ̂) is smaller than S E(ξ̂) is
driven by the variance σ2

ξ . The smaller σ2
ξ , the smaller the

standard error. Since standard errors are an inverse measure
of accuracy of a parameter estimator, smaller standard errors
are preferable. But simply choosing a prior with a small vari-
ance is not a sufficient way in order to increase the reliability.
Due to the considerations made previously, we already know
that smaller values of σ2

ξ are also associated with a stronger
weighting of prior knowledge or belief. Hence, the standard
error S EBME(ξ̂) reflects the variability of the estimate given
the data and the more or less weighted previous knowledge
or belief. The latter is more or less arguable.

Summary
In section 2 and 3, we developed the idea of how the un-

known value ξ can be estimated based on an observed re-
sponse pattern. Using MLE, the estimator ξ̂ is defined as the
value of the parameter space that maximizes the likelihood.
Under the assumption of local stochastic independence, the
likelihood function is simply the product of the k conditional
probabilities to solve the item expressed by the model equa-
tions of the 2PLM. Given that the item parameters are known,
the likelihood is simply a function of the sought variable ξ.
Thus, the ML estimation problem is a maximization problem
that can be solved by a root finding algorithm applied to the
first derivative of the likelihood or the log-likelihood func-
tion respectively. As an alternative for the ML estimator the
Bayesian MAP estimator was introduced. All Bayesian in-
ference rests upon the posterior distribution. We showed how
the likelihood is connected to the posterior distribution and
how a MAP estimation equation can be derived. Since the
first derivatives of the likelihood as well as for the MAP es-
timator cannot be solved analytically we developed the root
finding Newton-Raphson algorithm, a very general iterative
method applicable to both MLE and MAP estimation. The
NRA additionally requires the second derivatives of the log-
likelihood and the logarithm of the MAP estimation equa-
tion. It was shown that the second derivatives of the esti-
mation functions can also be used to compute the standard
errors of the parameter estimates. Although the maximum
likelihood estimation and the Bayesian estimation methods
are fundamentally different with respect to the underlying
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scientific perspective, many mathematical similarities exist.
Along with the derivation of the ML and MAP estimator
some basic properties of both were compared. We stated that
the standard error of the MAP is consistently smaller com-
pared to the standard error of the ML estimate. However,
Bayesian estimation requires the specification of a prior dis-
tribution that reflects prior knowledge or prior beliefs. How-
ever, the prior information might not be appropriate. In these
cases biased estimates result. In general, Bayesian estimators
are consistently biased at the individual level given the latent
ability respectively. Due to the shrinkage, the bias increases
the more the latent ability deviates from the mean of the prior
distribution.

So far, all considerations were purely theoretical. In the
next section it will be shown that all derivations from above
are sufficient in order to implement the estimation equations
in a computer software. It will be demonstrated how the
MLE and the MAP estimation functions can be specified in
the freeware R. For didactic reasons we will not use opti-
mization routines readily available in R but our own built
functions. These functions are sufficient for adaptive and
non-adaptive testing settings when the item parameters are
known. The only difference is that in non-adaptive testings
only one estimation process runs after the test has been com-
pleted. In adaptive testings ability estimation is repeated
again and again after each item response until an accuracy
criteria or a maximum number of items is reached.

Implementation in R

In this section we demonstrate how the previously de-
rived methods can easily be implemented in the program-
ming language R. This software is optimized for statistical
applications and already provides different functions such as
optim() or optimize() allowing for numerical optimiza-
tion. For didactic reasons, we will not use these functions
here. Instead, we will use the previously derived equations
and write our own estimation functions. Therefore, it will be
easy to understand how the theoretically developed formulas
work in an implemented algorithm. In a very small hypothet-
ical example, the use of MLE and the MAP estimator will be
demonstrated.

Imagine a test taker was faced with five items of a mathe-
matic test. He has completed the items with solving three of
the five items. The response vector u = (1, 1, 0, 0, 1) of real-
ized responses to five dichotomous items. The item parame-
ters are given by the items difficulties β = (−1,−0.5, 0, 0.5, 1)
and the item discriminations α = (1, 2, 0.5, 1, 2).

We start with the implementation of the MLE.estimator
function in R. The code is given in Figure 1. The aim is
to obtain the ML point estimate, its standard error and a
short table that gives information about the estimation pro-
cess. These three elements are denoted by xi, SE.xi and
it.log in the R function (see line 34-36 in Figure 1). Five
arguments need to be specified in the MLE.estimator func-
tion: (a) The response vector u denoted by resp.vect. (b)
alpha denotes the vector α of item discriminations (c) beta
is the vector β of item difficulties, (d) xi.start is the start-

ing value ξ0 to initiate the Newton-Raphson algorithm, and
(e) the convergence criteria denoted by tol. The NRA is an
iterative procedure. Hence, the values of the first and second
derivative of the likelihood will be calculated again and again
until the convergence criteria given by tol is reached. The
point estimate xi will be updated in each iteration (see line
20). This is realized in R by a while loop (see lines 7-27),
which means that the calculations specified within the loop
will be carried out as long as the condition d1.logLikDiff
< tol is not met. The expression d1.logLikDiff stands
for the modulus of the difference of the derivatives of the
log-likelihood between two successive iterations and is the
convergence criteria. In order to start the iteration process,
the value of d1.logLikDiff is arbitrarily set to 999 be-
fore starting the first iteration (see line 3). Additionally,
the point estimator xi is set to the staring value xi.start
before the while loop begins (see line 2). Each iteration
starts with the computation of the vector probs.1 of con-
ditional expected values P(Y1 = 1 | ξ̂ j), . . . , P(YI = 1 | ξ̂ j)
(see line 9). The vector P(Y1 = 0 | ξ̂ j), . . . , P(YI = 0 | ξ̂ j)
with the corresponding counter probabilities is denoted by
probs.0 (see line 10). The first and the second derivative
(d1.logLik and d2.logLik) of the log-likelihood are cal-
culated in lines 13 and 16. The iteration protocol it.log
is initialized as an empty matrix in lines 4 and 5. In each
iteration a row with the updated point estimator and with
the first and the second derivative will be added to it.log
(see line 17). The computation of the convergence criteria
d1.logLikDiff is specified in line 25. The if-condition
ensures that d1.logLikDiff is only computed from the sec-
ond iteration on (see line 23-26). If the algorithm has con-
verged, the while loop stops and the standard error SE.xi
can be computed for the final point estimate xi based on
the negative second derivative (see line 30). Finally, the
three elements xi, SE.xi and it.log, which the function
MLE.estimator should return, are specified as a list with
the respective names (see line 34 - 36). The R-output using
MLE.estimator to our hypothetical data example is shown
in Figure 2. It can be seen that five iterations were needed
to reach the convergence criteria. The final point estimator
is ξ̂ = 1.183539 with S E(ξ̂) = 0.8255662. Column two of
the ”iteration log“ reveals that the first derivative of the log-
likelihood l′(u; ξ) approaches zero during the iteration pro-
cedure. Due to the mathematical similarity of the MLE and
MAP estimator, the implementation is akin as well. The R
function BME.estimator is given in Figure 3. Here I will
only mention the differences to the MLE.funtion. Since
a prior distribution needs to be specified, the list of argu-
ments of the BME.estimator function is seven instead of
five. New arguments are the expected value of the prior dis-
tribution prior.mean and the standard deviation of the prior
denoted by prior.std. The remaining arguments are equal
to the ML estimator function. A careful comparison between
the R codes for the two estimation functions MLE.funtion
and BME.estimator shows that the only difference occurs
in the estimation of the first and the second derivatives in
lines 15 and 19, where the prior comes into play. Figure 4
shows the R-output when the BME.estimator function is
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1 MLE.estimator <- function(resp.vect, alpha, beta, xi.start, tol) {
2 xi <- xi.start
3 d1.logLikDiff <- 999
4 it.log <- matrix(ncol=3,nrow=0)
5 colnames(it.log) <- c("estimator", "d1.logLik", "d2.logLik")
6
7 while(d1.logLikDiff > tol)
8 {
9 probs.1 <- 1/(1+ exp(-alpha*(xi - beta)))

10 probs.0 <- 1 - probs.1
11
12 # first derivative
13 d1.logLik <- sum(alpha*(resp.vect - probs.1))
14
15 # second derivative
16 d2.logLik <- -1* sum(alpha^2 * probs.1 * probs.0)
17 it.log <- rbind(it.log, c(xi,d1.logLik,d2.logLik))
18
19 # Newton-Raphson
20 xi <- xi - (d1.logLik / d2.logLik)
21
22 # convergence criteria
23 if(nrow(it.log) > 1)
24 {
25 d1.logLikDiff <- abs(d1.logLik - it.log[(nrow(it.log)-1), 2])
26 }
27 }
28
29 # Standard error
30 SE.xi <- 1/sqrt(-1 * d2.logLik)
31
32 # Output of the MLE.estimator function
33 Results <- list(xi,SE.xi,it.log)
34 names(Results) <- c("point estimator", "standard error", "iteration log")
35 return(Results)
36 }

1

Figure 1. R code for the MLE function.

1 mle <- MLE.estimator(resp.vect = c(1,1,0,0,1),
2 alpha = c(1,2,0.5,1,2), beta = c(-1,-0.5,0,0.5,1),
3 xi.start = 0, tol = 0.00005)
4 # R-Output
5 > mle
6 $‘point estimator ‘
7 [1] 1.183539
8
9 $‘standard error‘

10 [1] 0.8255663
11
12 $‘iteration log‘
13 estimator d1.logLik d2.logLik
14 [1,] 0.000000 1.940878e+00 -1.700538
15 [2,] 1.141332 6.257442e-02 -1.497460
16 [3,] 1.183119 6.166447e-04 -1.467536
17 [4,] 1.183539 6.581029e-08 -1.467223
18 [5,] 1.183539 3.885781e-16 -1.467223

3

Figure 2. Example for ML estimation using the MLE function.



10 NORMAN ROSE

1 BME.estimator <- function(resp.vect, alpha, beta, xi, xi.start, tol,
2 prior.mean, prior.std)
3 {
4 xi <- xi.start
5 it.log <- matrix(ncol=3,nrow=0)
6 colnames(it.log) <- c("estimator", "d1.logLik", "d2.logLik")
7 d1.logLikDiff <- 999
8
9 while(d1.logLikDiff > tol)

10 {
11 probs.1 <- 1/(1+ exp(-alpha*(xi - beta)))
12 probs.0 <- 1 - probs.1
13
14 # first derivative
15 d1.logLik <- sum(alpha * (resp.vect - probs.1)) - (xi-prior.mean)/prior.std^2
16
17 # second derivative
18 d2.logLik <- -1* sum(alpha^2 * probs.1 * probs.0) - 1/prior.std^2
19 it.log <- rbind(it.log,c(xi,d1.logLik,d2.logLik))
20
21 # Newton-Raphson
22 xi <- xi - (d1.logLik / d2.logLik)
23
24 # convergence criteria
25 if(nrow(it.log) > 1)
26 {
27 d1.logLikDiff <- abs(d1.logLik - it.log[(nrow(it.log)-1), 2])
28 }
29 }
30
31 # Standard error
32 SE.xi <- 1/sqrt(-1 * d2.logLik)
33
34 # Output of the BME.estimator function
35 Results <- list(xi,SE.xi,it.log)
36 names(Results) <- c("estimator","standard error","iteration log")
37 return(Results)
38 }

2

Figure 3. R code for the BME function.

applied to our data example. Two results are remarkable.
First, the value ξ̂ = 1.183539 of the point estimator is closer
to zero as the ML estimator. This is the effect of the shrink-
age toward the mean of the prior. Secondly, the standard
error S E(ξ̂) = 0.8255662 is smaller compared to those of the
ML estimator. As outlined above, this is mainly driven by the
standard deviation of the prior, that weights the knowledge or
belief prior to the estimation. The smaller the standard devi-
ation of the prior the more is the prior information weighted
and the smaller is the standard error of the estimate.
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